人工智能在电力行业的应用有哪些 人工智能对电力系统的运行有什么影响

发布时间:2024-01-02 22:48:28
发布者:网友

大家好,今天来为大家分享人工智能在电力行业的应用有哪些的一些知识点,和人工智能对电力系统的运行有什么影响的问题解析,大家要是都明白,那么可以忽略,如果不太清楚的话可以看看本篇文章,相信很大概率可以解决您的问题,接下来我们就一起来看看吧!

一、人工智能技术在自动化前沿领域的应用价值

人工智能技术在自动化前沿领域的最大应用价值就是可以节省大量的人力资源,在电气工程领域的应用就有很多方面,诸如在电气工程自动化领域,通过对工程设备加入自动控制装置,通过对电力系统的局部控制,有效的保护电路。在故障检修作业中加入人工智能技术,通过人工智能的模糊算法对发生故障的设备进行排查。故障检修通常具有很强的不确定性,由于电气系统环环相扣,系统复杂,通过人工手段进行排查和检修往往需要耗费大量时间,会造成大量的停工带来的损失。而通过人工智能技术对电气系统进行仿真模拟,对各项参数进行对比检测,利用机器学习算法对比参数的离散值,确定正常参数范围和故障范围,再根据故障参数的来源确定需要维修的范围和具体诊断报告。这种人工智能技术的引入大大提高了电气工程领域及其自动化领域的发展速度。

二、人工智能对电力系统的运行有什么影响

人工智能在能源电力领域的应用,总体来讲可以归纳为:传统方式的智能化改进,关键技术的延展与创新,多元因素的智能化融合。细化来看,主要在以下几个方面:

在电力系统中,各方面的管理工作还存着的自动化、智能化程度偏低,即使有很多工作已经在智能化水平上有一定成果,但成果之间往往相互独立,未能充分发挥出有效的协同作用。人工智能的作用之一就是,有效整合现有系统,发挥系统之间的协同效用,极大化发掘现有系统的潜在价值,实在管理优化。

能源电力系统已经存在并发展许多年,拥有比较成熟的体系,但限于技术水平,很多领域并未能得以有效发展。

主要是大数据和云技术领域的开拓。主要体现为:需求侧响应、负荷预测、设备管理、信息化管理、电力市场等。

需求响应技术与用户行为特征息息相关,而对用户行为分析是基于历史数据的。面对大时间跨度,大用户范围,多类型行为等多重因素,数据规模庞大,关联关系不易分析。大数据技术可以有效挖掘潜在的数据信息,强大的计算能力也可以解决数据规模过大的难题,进而得到更准确的用户行为分析。

负荷预测技术不仅与用户息息相关,影响因素更是多种多样,温度、湿度、季节、天气等等。负荷预测方法多种多样,近些年基于R,Python等大数据分析的负荷预测方法开始浮现,想必随着更多人工智能技术的融入,可以有效解决历来面临的负荷预测精度问题。

设备管理是各行各业都面临的问题,尤其是长时间运行的功能性设备,何时进行必要的保养、检修或者更新,以往都是基于经验来决定的。对设备历史运行资料(尤其是故障资料)进行分析,合理的安排设备的相应管理及操作,能更充分的发挥各设备的价值。

信息化管理是能源电力领域的必然趋势,但各类能源、各类角色的数据各不相同,难于统一管理,这将影响信息化的协同建设。如何有效归整各类数据,提取关键信息,建立关联关系,是人工智能在推进信息化建设征程中的重要内容。

电力市场是当下国刚的一大热点,虽然有大量国外成熟电力市场的实例,但本土化的过程并不容易。负荷预测、金融行为、调度优化等,都需要新兴的计算技术予以支撑。

多能源融合:能源始终是人类社会面临的终极问题。将多种能源有效融合在一起,基于能源的分布、特点、效用等因素,制定更优的能源使用方案,是实现节能和可持续的重要方法。在这个过程中,不仅数据庞大,分析方法也极为复杂,这就需要人工智能大显身手了。

多技术融合:在前面讲能源互联网时,单独拿出了技术层面。不管是大数据、云计算还是信息互联,都是为了促进能源的融合,实现能源的互联网化,这也必定只是技术领域的冰山一角。随着以后更多的新兴技术的涌现和更多成熟技术的应用,也必能创造更多可能。

三、目前电力电子在电力系统应用主要有哪些前沿的研究热点

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

(一)大型发电机的静止励磁控制。静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

(二)水力、风力发电机的变速恒频励磁。水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速亦随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。

(三)发电厂风机水泵的变频调速。发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并有完整的系列产品。

(四)太阳能发电控制系统。开发利用无穷尽的洁净新能源———太阳能,是调整未来能源结构的一项重要战略措施。大功率太阳能发电,无论是独立系统还是并网系统,通常需要将太阳能电池阵列发出的直流电转换为交流电,所以具有最大功率跟踪功能的逆变器成为系统的核心。日本实施的阳光计划以3~4kW的户用并网发电系统为主,我国实施的送电到乡工程则以10~15kW的独立系统居多,而大型系统有在美国加州的西门子太阳能发电厂(7.2MW)等。

(一)柔性交流输电技术(FACTS)交流输电或电网的运行性能。已应用的FACTS控制器有静止无功补偿器(SVC)、静止调相机(STATCON)、静止快速励磁器(PSS)、串联补偿器(SSSC)等。近年来,柔性交流输电技术已经在美国、日本、瑞典、巴西等国重要的超高压输电工程中得到应用。国内也对FACTS进行了深入的研究和开发。

(二)高压直流输电技术(HVDC)流站可以搬迁,可以使中型的直流输电工程在较短的输送距离也具有竞争力。此外,可关断器件组成的换流器,由于采用了可关断的电力电子器件,可避免换相失败,对受端系统的容量没有要求,故可用于向孤立小系统(海上石油平台、海岛)供电,今后还可用于城市配电系统,并用于接入。

近年来,直流输电技术又有新的发展,轻型直流输电采用IGBT等可关断电力电子器件组成换流器,应用脉宽调制技术进行无源逆变,解决了用直流输电向无交流电源的负荷点送电的问题。同时大幅度简化设备,降低造价。

(三)静止无功补偿器(SVC)SVC是用以晶闸管为基本元件的固态开关替代了电气开关,实现快速、频繁地以控制电抗器和电容器的方式改变输电系统的导纳。SVC可以有不同的回路结构,按控制的对象及控制的方式不同分别称之为晶闸管投切电容器(TSC)、晶闸管投切电抗器(TSR)或晶闸管控制电抗器(TCR)。

配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力(CustomPower)技术。用户电力技术(CP)技术和FACTS技术是快速发展的姊妹型新式电力电子技术。采用FACTS的核心是加强交流输电系统的可控性和增大其电力传输能力;发展CP的目的是在配电系统中加强供电的可靠性和提高供电质量。CP和FACTS的共同基础技术是电力电子技术,各自的控制器在结构和功能上也相同,其差别仅是额定电气值不同,目前二者已逐渐融合于一体,即所谓的DFACTS技术。具有代表性的用户电力技术产品有:动态电压恢复器(DVR),固态断路器(SSCB),故障电流限制器(FCL),统一电能质量调节器(PQC)等。

配电网自动化智能电网投资重中之重:配电网作为输配电系统的最后一个环节,其实现自动化的程度与供用电的质量和可靠性密切相关。配电自动化是智能电网的重要基础之一。从投资构成上我们预计,智能电网的投资构成上,配网自动化将占40%左右,是智能电网投资的重中之重。我国配网自动化处于初级阶段:配网自动化在我国处在起步阶段,国内城市配网馈线自动化率不足10%,目前国外配网自动化的比例达到60%-70%,国内仍刚刚开始试点,未来市场空间广阔。

配电自动化指:利用现代电子技术、通信技术、计算机及网络技术与电力设备相结合,将配电网在正常及事故情况下的监测、保护、控制、计量和供电部门的工作管理有机地融合在一起,改进供电质量,与用户建立更密切更负责的关系,以合理的价格满足用户要求的多样性,力求供电经济性最好,企业管理更为有效。配电自动化是一个庞大复杂的、综合性很高的系统性工程,包含电力企业中与配电系统有关的全部功能数据流和控制。从保证对用户的供电质量,提高服务水平,减少运行费用的观点来看,配电自动化是一个统一的整体。

配自动化包含以下配电自动化包含以下4个方面:①馈线自动化。馈线自动化完成馈电线路的监测、控制、故障诊断、故障隔离和网络重构。其主要功能有:运行状态监测、远方控制和就地自主控制、故障区隔离、负荷转移及恢复供电、无功补偿和调压等。②变电站自动化。变电站自动化指应用自动控制技术和信息处理与传输技术,通过计算机硬软件系统或自动装置代替人工对变电站进行监控、测量和运行操作的一种自动化系统。变电站自动化以信号数字化和计算机通信技术为标志,进入传统的变电站二次设备领域,使变电站运行和监控发生了巨大的变化,取得显著的效益。变电站自动化的基本功能有:数据采集、数据计算和处理、越限和状态监视、开关操作控制和闭锁、与继电保护交换信息、自动控制的协调和配合、与变电站其他自动化装置交换信息和与调度控制中心或集控中心通信等项功能。变电站自动化技术是配电自动化的重点之一。③配电管理系统。配电管理系统(DMS)是指用现代计算机、信息处理及通信等技术和相关设备对配电网的运行进行监视、管理和控制。它是配电自动化系统的神经中枢,整个配电自动化系统的监视、控制和管理中心。主要功能有:数据采集和监控(SCADA)、配电网运行管理、用户管理和控制、自动绘图/设备管理/地理信息系统(AM/FM/GIS)等。④需求侧管理。通过一系列经济政策和技术措施,由供需双方共同参与的供用电管理。包含负荷管理、用电管理及需方发电管理等。需求侧管理的几个内容涉及电力供需双方,甚至与电力管理体制有关,必须通过立法和制订相应的规则,并最终由电力市场来调节。可以看到,电力的供需双方不仅仅是一种电力买卖关系,也是以双方利益为纽带的合作伙伴关系,在电力市场环境下,需求侧管理必将被重视。

根据对国内外发展动态的研究,配电自动化技术的发展呈现以下特点:

1)多样化尽管配电自动化技术的发展经历了三个阶段,但是从日本等国家的应用情况看,各个阶段的技术都在使用,并且各有其适应范围:基于自动化开关设备相互配合的馈线自动化系统适合于农网等负荷密度低、供电半径长、故障较多而供电可靠性较差的区域;第二阶段的配电自动化系统(DAS)适合于中小城市和县城;基于人工智能具有丰富高级应用的第三阶段配电自动化系统适合于大城市和重要园区;甚至仅仅具有遥信和遥测功能而不具备遥控功能的配电网信息系统也有其应用前景,主要因为它可以直接采用公用通信资源(如GPRS等),而不需要建设专用通信网。

2)集成化配电自动化涉及面很广,它不但有自己实时信息采集的部分,还有相当多的实时、非实时和准时实时信息需要从其它应用系统中去获取。比如,从地调自动化系统中获取主供电网和变电站信息;GIS系统中获取配电线路拓从扑模型和相关图形;从PMS系统中获取配电设备参数;从用电营销系统/负荷控制系统中获取用户信息等。因此,配电自动化的主站不再是单一的实时监控系统,而是将多个与配电有关的应用系统集成起来形成综合应用的系统。为了规范应用系统间集成和接口,国际电工委员会制订了IEC61968系列标准,提出运用信息交换总线(即企业集成总线),可将若干个相对独立的、相互平行的应用系统整合起来,在实现信息交换的同时,使每个系统继续发挥自己的特色,形成一个有效的应用整体。

3)智能化配电系统是智能电网的重要环节,配电系统智能化则是配电自动化的发展方向。因此,配电自动化与实现智能电网密切相关,主要表现在:自愈配电技术。这就是配电自动化系统中馈线自动化的故障诊断、定位、隔离以及恢复供电的基本功能,在智能电网的背景下需要进一步升级为适应分布式发电的双向能量流下的馈线自动化功能。高效运行技术。这就是配电自动化系统中高级应用软件功能。在智能电网的背景下需要进一步升级为考虑设备全生命周期的资产优化与智能调度业务功能。分布式电源和储能系统的接入技术。这是配电自动化系统面临的新要求,尤其是涉及到配网潮流计算和分析以及分布式电源对电网的影响。定制电力技术。根据电能质量的相关标准,以不同的技术和价格提供不同等级的电能质量,以满足不同用户对电能质量水平的需求。配电自动化系统是其技术支撑手段之一。用户互动技术。这就是配电自动化系统中停电管理功能,在智能电网的背景下需要进一步升级为适应用户双向互动的业务功能。

现在我国的电力都在往智能电网这块发展,所以的技术和发展都在一步一步的智能化,相信电力电子技术在电力领域的应用可以加速电力系统的智能化发展。

好了,文章到这里就结束啦,如果本次分享的人工智能在电力行业的应用有哪些和人工智能对电力系统的运行有什么影响问题对您有所帮助,这篇文章只是小编的分享,并不能代表大家观点和客观事实,仅仅给大家作为参考交流学习哦!还望关注下本站哦!

——————————————小炎智能写作工具可以帮您快速高效的创作原创优质内容,提高网站收录量和各大自媒体原创并获得推荐量,点击右上角即可注册使用

小炎智能写作

相关新闻推荐