人工智能大面积应用有哪些 人工智能哪些地方需要改进

发布时间:2024-01-03 13:57:52
发布者:网友

本篇文章给大家谈谈人工智能大面积应用有哪些,以及人工智能哪些地方需要改进对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

一、谁来给介绍一下,石墨烯的应用领域是哪些

石墨烯制备的太阳能电池石墨烯独特的二维结构使它在传感器领域具有光明的应用前景。巨大的表面积使它对周围的环境非常敏感。即使是一个气体分子吸附或释放都可以检测到。这检测可以分为直接检测和间接检测。通过穿透式电子显微镜可以直接观测到单原子的吸附和释放过程。通过测量霍尔效应方法可以间接检测单原子的吸附和释放过程。当一个气体分子被吸附于石墨烯表面时,吸附位置会发生电阻的局域变化。

石墨烯纳米带的二维结构具有高电导率、高热导率、低噪声,这些优良品质促使石墨烯纳米带成为集成电路互连材料的另一种选择,有可能替代铜金属。

石墨烯良好的电导性能和透光性能,使它在透明电导电极方面有非常好的应用前景。触摸屏、液晶显示、有机光伏电池、有机发光二极管等等,都需要良好的透明电导电极材料。特别是,石墨烯的机械强度和柔韧性都比常用材料氧化铟锡优良。由于氧化铟锡脆度较高,比较容易损毁。在溶液内的石墨烯薄膜可以沉积于大面积区域。

通过化学气相沉积法,可以制成大面积、连续的、透明、高电导率的少层石墨烯薄膜,主要用于光伏器件的阳极,并得到高达1.71%能量转换效率;与用氧化铟锡材料制成的元件相比,大约为其能量转换效率的55.2%。

2011年,美国佐治亚理工学院(GeorgiaInstituteofTechnology)学者首先报道了垂直排列官能化多层石墨烯三维立体结构在热界面材料中的应用及其超高等效热导率和超低界面热阻。

科学家发现最薄单层石墨烯2002年,垂直于基底表面的石墨烯纳米墙就被成功制备出来。它被看做是非常优良场致发射电子源材料。

由于石墨烯具有特高的表面面积对质量比例,石墨烯可以用于超级电容器的导电电极。科学家认为这种超级电容器的储存能量密度会大于现有的电容器。

由于石墨烯的可修改化学功能、大接触面积、原子尺吋厚度、分子闸极结构等等特色,应用于细菌侦测与诊断器件,石墨烯是个很优良的选择。科学家认为石墨烯是一种具有这潜能的材料。用石墨烯制成一个尺寸大约为DNA宽度的纳米洞,让DNA分子游过这纳米洞。由于DNA的四个碱基(A、C、G、T)会对于石墨烯的电导率有不同的影响,只要测量DNA分子通过时产生的微小电压差异,就可以知道到底是哪一个碱基正在游过纳米洞。这样就可以达成目的。

中国科学院上海分院的科学家发现石墨烯氧化物对于抑制大肠杆菌的生长超级有效,而且不会伤害到人体细胞。假若石墨烯氧化物对其他细菌也具有抗菌性,则可能找到一系列新的应用,像自动除去气味的鞋子,或保存食品新鲜的包装。

它为“太空电梯”缆线的制造打开了一扇“阿里巴巴”之门。美国研究人员称,“太空电梯”的最大障碍之一,就是如何制造出一根从地面连向太空卫星、长达23000英里并且足够强韧的缆线,美国科学家证实,地球上强度最高的物质“石墨烯”完全适合用来制造太空电梯缆线。

据科学家称,石墨烯除了异常牢固外,还具有一系列独一无二的特性,石墨烯还是目前已知导电性能最出色的材料,这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。

2012年7月18日,韩国化学技术研究所和首尔梨花女子大学,证明石墨烯作为一种高效的光催化剂可使人工光合作用系统的效率提升,其同时展示了一个能直接将二氧化碳转换成太阳能化学物质或太阳能燃料的基准实例。科学家使用石墨烯作为光触媒,然后再加以卟啉酶,该物质可以把阳光和二氧化碳转换成甲酸,用于塑料行业的化学品和燃料电池的燃料。测试结果表明,基于石墨烯的光催化剂在可见光范畴下功能强大,其整体效益显著高于其他催化剂。

2012年9月,美国伦斯勒理工学院的研究人员将世界上最薄的材料石墨烯制成一张纸,然后用激光或照相机闪光灯的闪光震击,将其弄成千疮百孔状,致使该片材内部结构间隔扩大,以允许更多的电解质“润湿”及锂离子电池中的锂离子获得高速率通道的性能。这种石墨烯阳极材料比如今锂离子电池中惯用的石墨阳极充电或放电速度快10倍,未来可驱动电动车。[3]

2012年10月,中国金属所研制出以石墨烯为集流体的可快速充放电柔性锂离子电池。[4]

石墨烯“多层糕”北京时间2012年10月15日物理学家组织网报道,英国曼彻斯特大学研究人员研究显示,把单原子层精确地堆叠起来,有望造出大量新型材料和设备,石墨烯及有关单原子厚度晶体为此提供了广阔的选择。他们将石墨烯和氮化硼的单原子层晶体一层压一层地堆叠起来,构建出一种“多层糕”,可作为纳米级的变压器。[5]

2013年2月5日,诺基亚正式宣布成为石墨烯旗舰联盟(GrapheneFlagshipConsortium)的一员,并从欧盟的未来与新兴技术组织(FET)获得了13.5亿美元研究经费,该经费将用于石墨烯材料(Graphene)的研究。诺基亚对石墨烯材料的应用设想为:

1、提升现有手机的性能、降低成本,例如取代在液晶显示器触控面板中广泛使用的透明ITO(氧化铟锡)导电层,以及用于其他高频电子元器件中;

2、在未来的概念手机设计中(如诺基亚一直在开发的柔性手机),将石墨烯应用于线路板、柔性材料以及一体化多点感应平台。石墨烯使触摸屏包含一层50纳米厚的DLC防挂材料、一层700纳米厚的聚对二甲苯涂层、一层200纳米厚的石墨烯导电层、一层200微米厚的PET材料,整个触摸屏厚度仅为0.2毫米。此外,诺基亚还计划利用石墨烯研发触觉反馈设备,当手机屏幕上显示出一幅丝绸的图片,触摸屏幕时会有摸到丝绸的顺滑感觉。

其它应用由于石墨烯实质上是一种透明、良好的导体,因此还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用这一点石墨烯可以用来做绷带、食品包装甚至抗菌T恤;用石墨烯做的光电化学电池可以取代基于金属的有机发光二极管,因石墨烯还可以取代灯具的传统金属石墨电极,使之更易于回收

二、2023年高校变化有哪些

1.国科大雁栖湖校区东区体育馆新建了健身房,添置了82件各类有氧、无氧训练器械。同时,国科大在雁栖湖校区一食堂、三食堂新建设2座“果壳水吧”,提供饮品、甜点、面点、简餐等,满足师生个性化餐饮需求。

2.国科大将雁栖湖校区4个学园楼的部分公共交流空间改造成文化功能区,为师生提供学习交流的新集合地。其中,学园三文化功能区配有大面积可擦拭写字板,学园四文化功能区配有电视屏幕和投影仪。

3.教育部公布了2021年动态调整增列的学位授权点名单,其中自主审核增列学位点116个、自主审核撤销学位点3个、动态调整增列学位点62个、动态调整撤销学位点48个。

4.重庆大学增设了电子信息、临床医学、马克思主义理论、中国语言文学等4个博士学位授权点,四川大学增设了电子科学与技术、动力工程及工程热物理、航空宇航科学与技术、人工智能、应用经济学等5个博士点。

5.中南大学、中国科学技术大学、西安交通大学、四川大学、吉林大学、北京师范大学和北京理工大学等7所高校增列了人工智能交叉学科博士点。

6.中国人民大学(地理学)、北京师范大学(安全科学与工程)、中国科学院大学(人口、资源与环境经济学)等三所高校各减少了一个硕士学位点。

以上是2021年高校的一些变化,具体还需要您根据所了解的实际情况来补充完善。

三、人工智能哪些地方需要改进

1、第一:对于应用场景的依赖性较强。目前对于应用场景的要求过高是AI软件落地应用的重要障碍之一,这些具体的要求不仅涉及到数据的获取,还涉及到网络通信速度以及相关“标的物”的配备。随着5G通信的落地应用和物联网的发展,未来场景建设会得到一定程度的改善。

2、第二:技术成熟度不足。目前有不少所谓的AI软件,实际上更多的是基于大数据技术的一种拓展,所以给用户的应用体验往往是“智商偏科、情商为零”。当前由于人工智能的技术体系尚未完善,所以AI软件要想达到一定的成熟度还需要很长一段时间。当前在生产环境下,有很多AI产品依然存在较大的缺陷,不少行业专家依然不敢大面积使用人工智能产品。

3、第三:对于应用人员的技术要求比较高。目前很多人工智能产品需要进行二次开发(编程),这个过程往往需要使用者有一定的技术积累,这也是导致当前人工智能产品落地困难的一个重要原因,尤其是对于广大的中小企业用户来说,搭建一个技术团队往往并不现实。

文章分享结束,人工智能大面积应用有哪些和人工智能哪些地方需要改进的答案你都知道了吗?这篇文章只是小编的分享,并不能代表大家观点和客观事实,仅仅给大家作为参考交流学习哦!欢迎再次光临本站哦!

——————————————小炎智能写作工具可以帮您快速高效的创作原创优质内容,提高网站收录量和各大自媒体原创并获得推荐量,点击右上角即可注册使用

小炎智能写作

相关新闻推荐